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Abstract Worst-case design is important whenever robustness to adverse envi-
ronmental conditions must be ensured regardless of their probability. It leads to
minimax optimization, which is most often treated assuming that prior knowledge
makes the worst environmental conditions obvious, or that a closed-form expres-
sion for the performance index is available. This paper considers the important
situation where none of these assumptions is true and where the performance in-
dex must be evaluated via costly numerical simulations. Strategies to limit the
number of these evaluations are then of paramount importance. One such strategy
is proposed here, which further improves the performance of an algorithm recently
presented that combines a relaxation procedure for minimax search with the well-
known Kriging-based EGO algorithm. Expected Improvement is computed in the
minimax optimization context, which allows to further reduce the number of costly
evaluations of the performance index. The interest of the approach is demonstrated
on test cases and a simple engineering problem from the literature, which facilitates
comparison with alternative approaches.

Keywords continuous minimax · EGO · Expected Improvement · Kriging ·
robust optimization · worst-case analysis

1 Introduction

Robust optimization [1–4] looks for a decision that is optimal with respect to some
performance index while taking into account uncontrolled sources of variation. For
a wide class of problems, a design vector xc must be tuned to achieve the best
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performance possible while protecting oneself against the potentially adverse ef-
fects of an environmental vector xe. Such problems are important in the context of
engineering design, robust control or estimation. In computer-aided design, for in-
stance, xc may correspond to design parameters, and xe may describe uncertainty
on the value of xc in mass production. In robust control, xc may correspond to the
tuning parameters of a controller, and xe may describe uncertainty on the process
to be controlled. In fault detection and isolation, xc may correspond to the tuning
parameters of a bank of Kalman filters and statistical decision tests, and xe may
include parameters describing environmental perturbations and degrees of freedom
of the tests on which some performance index is computed.

The approaches available for addressing such robust design problems can be
classified as stochastic or deterministic [5]. With stochastic approaches [6], one
may search for xc that optimizes the mathematical expectation with respect to
xe of some performance index [7,8]. This requires the availability of the proba-
bility distribution of xe, and may result in a design that is good on average but
unsatisfactory in low-probability regions of the xe-space. Minimax (or worst-case)
approaches [9], on the other hand, give equal consideration to all possible values
of xe. This is the strategy considered here, where we look for

{x̂c, x̂e} = arg min
xc∈Xc

max
xe∈Xe

J (xc,xe) , (1)

with J(·, ·) a scalar performance index, xc ∈ Xc a vector of design parameters and
xe ∈ Xe a vector of perturbation parameters. Xc ⊂ R

dc and Xe ⊂ R
de are assumed

to be known compact sets. Sometimes, the value of the worst vector xe in Xe is
easy to guess based on prior problem knowledge. If, for instance, we are trying to
minimize the worst-case injury in an automotive crash simulation, common sense
tells us that the worst case will be when the speed of the vehicle is at its highest
possible value. In such a case, solving (1) boils down to a classical minimization
problem where the environmental variables take their worst-case values. This is
not the situation considered here. It is assumed instead that the worst-case values
of the environmental variables may depend on the settings of the design variables,
in a way that is not intuitively obvious (see, for instance, the vibration absorber
example of Section 4.2).This paper is thus devoted to the approximate computation
of a minimax solution (1) for problems with the four following characteristics:

– the worst-case value of the environmental vector cannot be deduced from prior
problem knowledge and may depend on the value taken by the design vector,

– the feasible sets Xc and Xe are continuous,
– there is no closed-form expression for J (xc,xe),
– J (xc,xe) can only be evaluated through possibly very costly numerical simu-

lations.

Section 2 recalls the state of the art in this context and in particular a Kriging-
based strategy that we presented in [10]. Section 3 presents a new strategy to
further decrease the number of evaluations of the performance index. In Section 4,
these two approaches are compared on six test functions of the literature and one
classical benchmark problem in mechanics (a vibration damper).
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2 Existing tools for continuous minimax optimization of black-box

functions

There are two brute-force approaches one may think of. The first is nested opti-
mization, where each evaluation of the cost function for the outer minimization
is carried out by an inner maximization. The second one evaluates performance
for each design variable setting at a very large discrete set Re of points in the
continuous set of environmental variables, and takes the worst value found. With
both approaches one must expend a lot of effort to find the worst-case performance
for each setting of the design variables. These approaches are thus inappropriate
when dealing with expensive simulations. Computationally-intensive techniques
based on evolutionary algorithms [11,12] are inapplicable for the same reason. A
number of less expensive methods [9,13,14] require instead a closed-form expres-
sion for the performance index, which is assumed unavailable here.

The fact that the worst-case value of the environmental vector is not obvious
makes the procedure proposed in [15] particularly adequate. In this procedure, a
small discrete set Re of points in the space of the environmental variables, which
are associated with a high value of the performance index, is updated. Replacing
a maximization over the continuous set Xe by a much easier one over the discrete
set Re is a relaxation of the original problem. This relaxation procedure is generic
and does not specify the optimization algorithms to be used.

The cost involved in the evaluation of the performance index suggests using
an optimization strategy based on surrogate modeling such as EGO [16], a well-
established method for expensive black-box functions with no derivatives. The
origins of EGO can be traced back to [17,18], see [19] for an historical account
and more details. However, EGO cannot handle minimax optimization. A natural
approach for dealing with all four characteristics of the problems considered is
thus to use the procedure of [15] with optimizations performed by EGO. This was
done in [10], where the algorithm MiMaReK (called MiMaReK 1 in what follows)
was introduced.

To facilitate the understanding of the new results presented in Section 3 and
make the paper self-contained, we now summarize the relaxation procedure for
minimax optimization described in [15] and EGO before recalling the main features
of MiMaReK 1.

2.1 Relaxation procedure for minimax optimization

Minimax optimization searches for the vector xc of design variable settings that
minimizes the worst-case performance maxxe∈Xe

J (xc,xe). This problem can be
relaxed by performing the maximization on a finite set of pointsRe of Xe instead of
carrying out the maximization over all possible xe in Xe. By a suitable increase of
the size of the set Re, the approximate problem will gradually become equivalent
to the original problem. The basic idea of the algorithm is to start with an Re

consisting of just one randomly chosen point x∗
e in the space of the environmental

variables. The approximate problem is then solved to come up with the best set
of design variables x∗

c and the corresponding minimax value J∗ = J (x∗
c ,x

∗
e) by

minimizing J (xc,x
∗
e) over Xc. Given x∗

c , the next step searches for a point x∗
e in the

environmental space that makes the performance as bad as possible, bymaximizing
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J(x∗
c ,xe) over Xe. If this reverse optimization in the entire environmental space

does not worsen performance too much, that is, if J(x∗
c ,xe)

∗ − J∗ < εR for some
positive threshold εR > 0, then x∗

c is considered as a good enough approximation
of a minimax solution and the algorithm is stopped. Otherwise, the point x∗

e is
added to the set Re and the procedure is iterated. This strategy, proposed in [15],
is summarized as Algorithm 1. Under reasonable technical conditions, it has been
proven to converge to an exact solution when εR → 0.

Algorithm 1 Minimax optimization via relaxation [15]

Set εR.

1. Pick x∗
e ∈ Xe, and set Re = {x∗

e}.
2. Compute x

∗
c = arg min

xc∈Xc

{
max
xe∈Re

J(xc,xe)

}
and J∗ = maxxe∈Re

J (x∗
c ,xe).

3. Compute x
∗
e = arg max

xe∈Xe

J(x∗
c ,xe).

4. If J(x∗
c ,x

∗
e)− J

∗
< εR then return {x∗

c ,x
∗
e} as an approximate solution to the

initial minimax problem (1).
Else, append x∗

e to Re and go to Step 2.

Note that each new iteration is computationally more expensive than the previ-
ous one, because evaluating the worst-case performance at a trial point xc requires
evaluating J(xc,xe) for all xe in Re. On the examples treated so far, it turned out
that only a few iterations of the outer loop are necessary before the convergence
criterion is satisfied.

Steps 2 and 3 leave open the choice of the algorithm to be employed to compute
the optimizers required. In MiMaReK, both optimizations – first to find x∗

c and
then to find x∗

e – are carried out via the response-surface-based EGO algorithm,
which makes it possible to limit the simulation budget.

2.2 EGO

EGO (the acronym of Efficient Global Optimization [16]) exploits the distribu-
tion of Kriging prediction [20] to search for a global minimizer x̂ ∈ X of a cost
function f(x), known only through numerical evaluations. Assume that the value
of the function has already been evaluated at n points, Xn = {x1, . . . ,xn} and
denote by fn = [f(x1), . . . , f(xn)]

T the vector of the corresponding function val-
ues. In Kriging, the value of f over X is predicted by modeling it as the Gaussian
process (GP)

F (x) = p(x)Tb+ Z(x). (2)

In this model, p(x) is some known vector of regressors (usually chosen constant
or polynomial in x) and b is a vector of unknown regression coefficients to be
estimated, e.g. by maximum likelihood. Z(x) is a zero-mean Gaussian Process
whose covariance function is expressed as

cov (Z(xi,xj)) = σ
2
ZR(xi,xj), (3)
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with σ2
Z the process variance and R(·, ·) a correlation function, possibly parame-

terized by a vector θ. For any given x ∈ X, the Kriging prediction is Gaussian and
thus entirely characterized by its mean and variance. The mean of the prediction
is given by

f̂(x) = p(x)Tb+ r (x)T R
−1(fn −Pb), (4)

where
R|i,j = R(xi,xj), {i, j} = 1, ..., n,

r(x) = [R(x1,x), ..., R(xn,x)]
T

P = [p(x1), ...,p(xn)]
T
.

(5)

The variance of the prediction is

σ̂
2 (x) = σ

2
Z

(
1− r (x)T R

−1
r (x)

)
. (6)

In this paper, the following correlation function is used

R(xi,xj) = exp

(
−

dimX∑

k=1

∣∣∣∣
xi(k)− xj(k)

θk

∣∣∣∣
2
)
, (7)

where xi(k) is the k-th component of xi and the positive coefficients θk are scale
factors. Other correlation functions may be employed [21]. The process variance
σ2
Z and the vector of parameters θ of the correlation function (if any) can be

estimated, for instance, by maximum likelihood [22].
EGO (Algorithm 2) is initialized by sampling n points in X, e.g., with Latin

Hypercube Sampling (LHS) [23], and computing the corresponding values of the
function to be minimized. Let Φ(z,x) be the (Gaussian) cumulative distribution
of the Kriging prediction at z, when the vector of parameters takes the value x.
The corresponding probability density is

ϕ(z,x) ,
d

dz
(Φ(z,x)) . (8)

Define improvement [22] as

I(z) = (fn
min − z)+ =

{
(fn

min − z) if positive

0 otherwise
, (9)

where fn
min is the smallest value in fn. The Expected Improvement (EI) based on

the Kriging prediction is

EI(x) = E [I(z)] =

∫ +∞

−∞

(fn
min − z)+ϕ(z,x)dz =

∫ fn

min

−∞

(fn
min − z)ϕ(z,x)dz, (10)

which can be computed in closed-form using (4) and (6) as

EI
(
x, f

n
min, f̂ , σ̂

)
= σ̂ (x) [uΦN (u) + ϕN (u)] , (11)

where ΦN is the cumulative distribution function of the normalized Gaussian dis-
tribution N (0, 1) and ϕN the corresponding probability density function, and
where

u =
fn
min − f̂ (x)

σ̂ (x)
. (12)
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EGO achieves an iterative search for the global minimum of f and an associated
global minimizer. Since EI(x) is simple and fast to evaluate using (4) and (6),
it can be optimized at each step via an auxiliary algorithm to be chosen (one
may for instance choose DIRECT [24] as recommended in [25], but many other
algorithms could be considered including [26]). The maximizer of EI(x) is then
used to run a single costly simulation of the black-box function f(·). The resulting
data are appended in the sets {Xn, fn} used for updating the GP model at the next
iteration. LHS is used to initialize Xn at Step 1, a usual heuristic being to draw
ten points per dimension of X. EGO stops when the number of evaluations reaches
the budget nmax alloted for the evaluation of f(·), or when Expected Improvement
falls below the threshold εEI [22].

The theoretical properties of EGO and other algorithms based on EI have been
studied in [27,28]. If the performance index is appropriately described by a GP
with known and fixed covariance function, then convergence to one of the global op-
timizers is guaranteed as the number of evaluations tends to infinity. Convergence
rates are also discussed in [28]. However, in real-life applications, it is impossible to
check whether the performance index is appropriately described by a GP and even
if it is so, the covariance function is usually unknown. Despite these limitations,
EGO and other Kriging-based optimization algorithms have demonstrated their
ability to find an estimate of the global optimum and a global optimizer on both
analytical and real-world examples [22,25,29,30].

Algorithm 2 EGO [16]

Set εEI, nmax.

1. Choose an initial sampling Xn = {x1, ...,xn} in X

2. Compute fn = [f (x1) , ..., f (xn)]
T

while max
x∈X

EI(x) > εEI and n < nmax

3. Fit the Kriging model on the known data points {Xn, fn} with (4)-(6)
4. Find f

n
min = min

i=1,...,n
{f (xi)}

5. Find xn+1 = argmax
x∈X

EI(x)

6. Compute f(xn+1), append it to fn and append xn+1 to Xn

7. n← n+ 1

end while

2.3 MiMaReK 1

MiMaReK stands for Minimax optimization via relaxation and Kriging. It searches
for the solution of (1) in the context of costly simulations by combining Algo-
rithms 1 and 2. The initial algorithm MiMaReK 1 was presented in [10]. A sim-
plified description of the resulting procedure is given in Algorithm 3. In this algo-
rithm, two instances of EGO with two separate Kriging models are used, one for
each of the two optimization steps of Algorithm 1.

– The first one depends only on xc, and interpolates max
xe∈Re

{J(xc,xe)}.
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– The second one depends only on xe and interpolates J (x∗
c ,xe).

The relaxation principle from Algorithm 1 is incorporated by evaluating and
keeping in memory the values taken by the black-box function for all couples
{xc ∈ X c

0 ,xe ∈ Re}, so that EGO can be initialized at Step 2. This means that
nc evaluations of the black-box function should be computed at each iteration of
Step 2, corresponding to the nc values of xc in the initial design X c

0 associated
to the new point x∗

e found at the previous iteration of Step 3. This strategy uses
the classical Expected Improvement expression to find x∗

c , which makes it simple
to implement and limits the complexity of the Kriging model to a dimension of
dc with only nc initial points. The same scheme is employed at Step 3, where
the maximiztion is carried out in a space of dimension de with ne initial sam-
ples. However, the main drawback of this strategy is a loss of information because
the evaluations carried out during previous runs of the EGO algorithms are not
taken into account, which may lead to sampling repeatedly in areas of interest for
determining the worst-case performance.

The tuning parameters of MiMaReK 1 are the initial numbers of evaluations nc

and ne, the maximum numbers of evaluations nc
EI and ne

EI, and the thresholds εcEI

and εeEI for the two instances of EGO, as well as the global relaxation threshold εR.
An analysis performed in [10] on analytical test functions has confirmed that
the smaller the thresholds εcEI, ε

e
EI and εR are, the more accurate the solution

will be (at the price of more evaluations). Another interesting feature is that an
approximate minimax solution is still obtained with higher thresholds, but with
less accuracy.

To assess the improvement in computational cost achieved by the new algo-
rithm, the number of evaluations required by MiMaReK 1 is established as follows.
It is assumed that the maximum numbers of iterations (nc

EI and ne
EI) are reached

during the optimizations by EGO. The first iteration of the outer loop starts with
a minimization to find x∗

c . This requires nc evaluations for the initial design and
nc
EI evaluations for the iterations. Then comes the maximization to find x∗

e , which
requires ne evaluations for the initial design and ne

EI evaluations for the iterations.
In the second loop, the values differ because the set Re now has two components.
When minimizing to find x∗

c , the worst-case value at each point in the initial de-
sign must be updated because there is a new element in Re, and this update still
requires nc function evaluations. During the iterations, however, evaluating a trial

point xc now requires two evaluations of the expensive function, J(xc,x
(1)
e ) and

J(xc,x
(2)
e ), because the worst value for all points in Re is searched for. The num-

ber of evaluations for the maximization to find x∗
e remains unchanged. Thus we

have nc+nc
EI+ne+ne

EI evaluations during the first outer loop, nc+2nc
EI+ne+ne

EI

during the second, nc + 3nc
EI + ne + ne

EI during the third, and so forth. Assuming
that N iterations of the outer loop are required, the total number of evaluations
of the expensive function is finally

nMM1 = N

(
nc + ne +

N + 1

2
n
c
EI + n

e
EI

)
. (13)

An illustration of the behavior of the relaxation procedure at Step 2 of Mi-
MaReK 1 for the test function f3 (see Section 4.1) is provided in Figure 1. The func-
tion displayed corresponds to the Kriging approximation of {maxxe∈Re

J (xc,xe)}
over Xc. The dots indicate the location of the points sampled by the algorithm. The
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Algorithm 3 MiMaReK 1 [10]

1. Step 1

(a) Choose x∗
e in Xe. Take Re = {x∗

e}.
(b) Choose X c

0 = {xc,1, ...,xc,nc
} in Xc and X e

0 = {xe,1, ...,xe,ne
} in Xe.

while e is larger than some positive scalar εR chosen by the user

2. Step 2 Minimization with relaxation using EGO

(a) Find x
∗
c = arg min

xc∈Xc

{
max
xe∈Re

J (xc,xe)

}
using EGO on X c

0 and the previ-

ously computed values of J for {xc ∈ X c
0 ,xe ∈ Re}.

(b) Compute J∗ = maxxe∈Re
J (x∗

c ,xe).

3. Step 3 Maximization using EGO

(a) Find x
∗
e = arg max

xe∈Xe

{
J
(
x
∗
c ,xe

)}
using EGO on X e

0 and append it to Re.

4. Step 4 Compute e = J (x∗
c ,x

∗
e)− J∗.

end while

true optimum is located at x∗
c = 10 for this test function, where the function value

is equal to 9.7794 ·10−2 (dashed line). Recall that, at this step of Algorithm 3, the
objective is to minimize this function over Xc. It can be seen that at each iteration
a larger portion of the function graph is located above the true optimum. This is
achieved thanks to the relaxation procedure that iteratively excludes local minima
by incorporating a new vector from Xe (selected at Step 3 of MiMaReK 1) into
the finite set Re.

Fig. 1: Effect of iterative relaxation at Step 2 of MiMaReK 1 for f3
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3 New strategy for saving evaluations: MiMaReK 2

MiMaReK 1 is quite effective for an economical determination of approximate
solutions of minimax problems (see [10,31] for test cases). It has, however, some
inherent inefficiencies. Each iteration of its outer loop is carried out by building
two dedicated Kriging predictors from scratch (one for predicting, for a given value
of xc, the performance index J as a function of xe, and the other for predicting
the maximum of J over a finite number of values of xe, as a function of xc).
As the the previous set of observations is not reused, this entails a number of
costly evaluations that could be avoided by reusing all past evaluations of the
performance index J in the next iteration.

This is achieved with the new strategy, which works with a single response
surface in the combined space of design and environmental variables. Thus, every
function evaluation can be used to update the surface and no information is lost.

A first simple step towards this decrease of the number of evaluations of J

is to use a single Kriging predictor at Step 3 for all maximizations of J(x∗
c ,xe)

with respect to xe. This Kriging predictor is based on all past evaluations of the
performance index, and each execution of the outer loop increases the number of
its training data.

3.1 Expected Improvement at relaxation step

Using the same Kriging predictor at Step 2 for the minimization with relaxation
on Re is more complex regarding the EI optimization. An easy-to-implement idea
would be to approximate the mean of this process by

µ̂(xc) = max
xe∈Re

Ĵ(xc,xe) , Ĵ(xc, x̌e) (14)

and its variance by

σ̂
2(xc) = σ̂

2(xc, x̌e), (15)

with Ĵ and σ̂2 computed by Kriging. It would then become trivial to compute EI
as needed by EGO. However, this is a daring approximation, as the mean of the
maximum is not the maximum of the means and the distribution of the maximum
is not Gaussian. Preliminary tests have confirmed that this approach is not viable.

In the new version of MiMaReK presented in Algorithm 4 (and called Mi-
MaReK 2 in the following), the Expected Improvement of {maxxe∈Re

J(xc,xe)}
is computed instead, as

EImm (xc) = E

[
max

i∈1,...,m

(
Jmin − J(xc,x

(i)
e )
)
+

]
, (16)

where Jmin is the best performance of {maxxe∈Re
J(xc,xe)} obtained so far and

m the number of points in Re.

In a preliminary version of MiMaReK 2 [32], the x
(i)
e were assumed independent

and an approximation of EImm computed as the result of a numerical integration
with a quadrature method, based on the univariate cumulative and probability
densities corresponding to each environmental input vector in Re. However, if
these input points are sufficiently close to each other, a significant approximation
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error is introduced by considering them as independent. The estimation method
used in the present paper thus does not make this simplifying assumption.

The Kriging covariance [33] between points
(
xc,x

(i)
e

)
and

(
xc,x

(j)
e

)
is equal to

σ̂ij = σ
2
Z

(
Rij − r

T
i R

−1
rj

)
, (17)

where Rij = R
(
(xc,x

(i)
e ), (xc,x

(j)
e )
)
and ri = r

(
xc,x

(i)
e

)
. For i = j, the variance

formula (6) is obtained. The corresponding m ×m Kriging covariance matrix is
denoted by Σm. The Monte-Carlo computation [7] of EImm for some xc ∈ Xc

proceeds as follows.

1. Compute the vector f̂ with components f̂i = Ĵ
(
xc,x

(i)
e

)
for i = 1, . . . ,m.

2. Compute the covariance matrix Σm and let L such that Σm = LLT is its
Cholesky factorization.

3. GenerateNmc Monte-carlo samples of Gaussian random vectors εk ∼ N (0, Im).
4. For each realization (k = 1, . . . , Nmc), compute

f̂
mc
k = max

i=1,...,m
f̂ + Lεk (18)

and the corresponding improvement

Imc
k =

(
Jmin − f̂

mc
k

)
+
. (19)

5. A Monte-Carlo estimate of EImm is then provided by

EImc
mm =

1

Nmc

Nmc∑

k=1

Imc
k . (20)

The Tallis formula recently reported in [34] for multi-EI computation might
be employed to obtain an exact formula for EImm. It involves multiple calls to
multivariate density functions, which may limit its applicability to small values of
m.

3.2 Algorithm description

With a single Kriging model on Xc×Xe, MiMaReK 2 performs two EGO optimiza-
tions (at Steps 2 and 3): one on Xc using the modified Expected Improvement (20)
and one on Xe using the classical Expected Improvement (11). The main algorith-
mic difficulties reside in the management of the global set of evaluated points,
while the optimizations should be performed separately on Xc or Xe. The set X
contains all sampled points (xc,xe) and J stores the corresponding values of J .

At Step 2, the objective is to find

x
∗
c = arg min

xc∈Xc

{
max
xe∈Re

J(xc,xe)

}
. (21)

This is achieved by EGO, which now exploits the new expected improvement
criterion (20) evaluated by Monte-Carlo to find successive points of interest.
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The computation of Jmin at Step 2 is performed on a finite subset Xc containing
all x∗

cs obtained at the end of each iteration of Step 2. Another set Jc stores
maxxe∈Re

J(x∗
c ,xe) for these points. Both Jc and Xc each contain N data points,

where N is the number of elements in Re (which is equivalent to the number of
iterations of the main loop sequence comprising Steps 2 to 4).

At the beginning of each new instance of Step 2, N evaluations of the black-
box function are required to evaluate J(xc,x

∗
e) and check whether the maximum

values in Jc should be updated, because a worse performance has been found for
some of the previous optimal design vectors in association with a new candidate
environmental vector x∗

e . The initial target value Jmin to be used in the EGO
algorithm at Step 2 is then set to the minimum of Jc.

The same procedure is applied when a new x∗
c is found at each iteration of the

EGO algorithm at Step 2; N evaluations are performed to obtain the values of
J(x∗

c ,xe) for all xe ∈ Re and they are appended to the joint sets {X ,J} (unlike in
MiMaReK 1). If the maximum of these values is smaller than Jmin, it then becomes
the new Jmin. After convergence of EGO, the worst-case value J∗ is set to Jmin

and x∗
c is set to the corresponding argument. These values are then respectively

appended to the sets Jc and Xc.
At Step 3, the objective is to find

x
∗
e = arg max

xe∈Xe

J
(
x
∗
c ,xe

)
(22)

Since EGO has been presented for minimization, the maximization of J car-
ried out at Steps 3(a)ii and 3b is transformed into the minimization of −J . The
relaxation procedure (Algorithm 1) on which MiMaReK is built requires that this
maximization problem must be solved on Xe with a fixed xc = x∗

c . Since the global
Kriging model is built on the joint space Xc×Xe, the evaluation of the target max-
imal value Jmax should be carried out only for samples respecting xc = x∗

c .
At the beginning of Step 3, it is most likely that only one point satisfies this

constraint, i.e. Jmax = −Jmin. The number of candidates then grows during Step 3,
since the maximization of the classical Expected Improvement on the joint model
of J , with xc = x∗

c fixed, leads to new evaluation of the black-box function. When
this step terminates, a new x∗

e has been found and the convergence condition on
J (x∗

c ,x
∗
e)−J∗ can be checked. Depending on the result, the algorithm either stops

and provides the approximate minimax solution (up to the precision εR) or starts
another round (N is incremented by 1).

Let us now count the number of evaluations needed by MiMaReK 2, for compar-
ison with MiMaReK 1. It is still assumed that the maximum numbers of iterations
(nc

EI and ne
EI) are reached during the optimizations by EGO, and additionally

that the number n of initial samples is the same as the total number of initial
samples in MiMaReK 1, so n = nc + ne. At the beginning of MiMaReK 2, nc+ne

evaluations are performed. Then, during Step 2, nc
EI additional evaluations are

required and ne
EI at Step 3. Therefore, after one round of the main loop (N = 1),

the number of evaluations is simply nc + ne + nc
EI + ne

EI.
When the second round begins, there are now 2 points in Re and 2 points in

Xc (the x∗
c found after the first iteration of Step 2), therefore it is necessary to

evaluate the value of J (xc,x
∗
e) for the first xc (the other one has already been done

at the end of Step 3), thus one additional evaluation is necessary. Then, during
EGO at Step 2, N = 2 evaluations are required for each new point x∗

c resulting
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Algorithm 4 MiMaReK 2

1. Step 1

(a) Choose an initial design X with n points in the joint space Xc × Xe.
(b) Compute the vector J of the corresponding performance index values.
(c) Pick one point x∗ = (x∗

c ,x
∗
e) in X .

(d) Take Re = {x∗
e}, Xc = {x∗

c} and Jc = {J(x∗
c ,x

∗
e)} .

while e > εR, with εR a positive scalar chosen by the user,

2. Step 2 Minimization with relaxation using EGO
(a) Evaluate J (xc,x

∗
e) for all xc ∈ Xc and update Jc.

(b) while EImc
mm(xc) is large enough and nc

EI is not reached,
i. Fit a Kriging model on the data {X ,J}.
ii. Compute the best performance obtained so far Jmin using Xc and Jc.
iii. Find the next point of interest x∗

c = arg max
xc∈Xc

EImc
mm(xc) with (20).

iv. Append to X all the couples {x∗
c ,xe} for all xe ∈ Re.

v. Compute the performance index at each of the points thus introduced
in X , and append the results to J.

end while

(c) Find J∗, the minimum of the worst performances, and its argument x∗
c .

Append them repectively to Jc and Xc.
3. Step 3 Maximization using EGO

(a) while EI(xe) is large enough and ne
EI is not reached,

i. Fit a Kriging model on the data {X ,J}.
ii. Find the worst performance obtained so far Jmax = min

xc=x
∗

c

{−J}.
iii. Find the next point of interest x∗

e = arg max
xe∈Xe

EI(xe).

iv. Introduce in the design X the point (x∗
c ,x

∗
e).

v. Compute J (x∗
c ,x

∗
e), and append it to J.

end while

(b) Find x
∗
e = arg min

xc=x
∗

c

{−J} and append it to Re.

4. Step 4 Compute e = J (x∗
c ,x

∗
e)− J∗

end while

from the EImm optimization and nc
EI steps are performed, which makes in the end

N · nc
EI additional evaluations. During Step 3, ne

EI evaluations are required. Thus,
at the end of the second round of the main loop (N = 2), the number of additional
evaluations is equal to 2nc

EI + 1 + ne
EI.

At the beginning of Step 3, there are now N = 3 points in Re, therefore the
N − 2 values of J (xc,x

∗
e) for the xc that are different from the last x∗

c should be
evaluated, resulting in two additional evaluations. During EGO at Step 2, there
are again N · nc

EI performed (with now N = 3), and ne
EI during EGO at Step 3.

Thus, the total number of evaluations for the third round is equal to 3nc
EI+2+ne

EI.
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By adding these number of evaluations and generalizing to N iterations of the
main loop, the following count is obtained

nMM2 = nc + ne +

(
n
c
EI

N∑

i=1

i

)
+

(
N−1∑

i=1

i

)
+Nn

e
EI, (23)

nMM2 = nc + ne +
N(N + 1)

2
n
c
EI +

N(N − 1)

2
+Nn

e
EI, (24)

nMM2 = nc + ne +N

(
(N + 1)

2
n
c
EI +

(N − 1)

2
+ n

e
EI

)
, (25)

By subtracting this number of evaluations from the one obtained for MiMaReK 1
at equation (13), one gets

nMM1 − nMM2 = (N − 1) (nc + ne)− N (N − 1)

2
= (N − 1)

(
nc + ne − N

2

)
,

(26)
which means that MiMaReK 2 requires less evaluations than MiMaReK 1 if, for
N > 1,

nc + ne >
N

2
. (27)

This inequality will usually be satisfied, as can be seen in the examples of the next
section. Many iterations of the global loop are indeed required to make the right-
hand side larger than the total number of initial samples nc + ne (nc and ne are
usually chosen equal to 10 times dimXc and dimXe, according to a widely-used
rule of thumb).

4 Examples

In this section, the performances of MiMaReK 1 and MiMaReK 2 are evaluated
and compared on six analytical test cases [11,12,35] and a simple engineering
problem [36–38]. Using such examples from the literature facilitates comparison
with alternative approaches.

4.1 Analytical test cases

The first four test functions have scalar arguments

f1(xc, xe) = (xc − 5)2 − (xe − 52),

f2(xc, xe) = min{3− 0.2xc + 0.3xe, 3 + 0.2xc − 0.1xe},
f3(xc, xe) =

sin(xc − xe)√
x2
c + x2

e

,

f4(xc, xe) =
cos
(√

x2
c + x2

e

)

√
x2
c + x2

e + 10
,
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while the last two have two-dimensional vector arguments

f5(xc,xe) = 100(xc2 − x2
c1)

2 + (1− xc1)
2 − xe1(xc1 + x2

c2)− xe2(x
2
c1 + xc2),

f6(xc,xe) = (xc1 − 2)2 + (xc2 − 1)2 + xe1(x
2
c1 − xc2) + xe2(xc1 + xc2 − 2).

Table 1 summarizes the optimal values as indicated in [12]. For each of the test
cases and both versions of MiMaReK, the following applies:

– the selection of the n initial sample points is carried out by LHS, with the
usual rule of thumb n = 10× dimX,

– the thresholds (εR, ε
c
EI, ε

e
EI) are set to 10−3, and the maximum numbers of

iterations nc
EI and ne

EI are set to 20× dimXc and 20× dimXe respectively.

Table 2 reports the numerical results obtained with MiMaReK 1 and MiMaReK 2
in terms of mean squared error (MSE) of x̂c with respect to the reference value
x∗
c , averaged on fifty random initializations, and those from [11], [12] and [35]

for comparison. Table 3 gives the number of evaluations required to obtain these
results. The two versions of MiMaReK are always competitive compared to other
methods. Few evaluations turned out to be necessary on these test problems, while
the methods proposed in [11] and [12] required about 105 evaluations. Results
obtained with an arbitrarily fixed number of evaluations equal to 110 were reported
in [35] using a very sparsely detailed method. The number of evaluations performed
by MiMaReK 2 is always significantly smaller than with MiMaReK 1, and (27) is
always satisfied.

Table 1: Reference solutions x∗
c , x

∗
e and fi(x

∗
c ,x

∗
e) for the six analytical functions

(Section 4.1)

Function Xc Xe x∗
c x∗

e fi(x
∗
c ,x

∗
e)

f1(xc,xe) [0; 10] [0; 10] 5 5 0

f2(xc,xe) [0; 10] [0; 10] 0 0 3

f3(xc,xe) [0; 10] [0; 10] 10 2.1257 9.7794 · 10−2

f4(xc,xe) [0; 10] [0; 10] 7.0441 10 4.2488 · 10−2

f5(xc,xe) [−0.5; 0.5]× [0; 1] [0; 10]2
0.5

0.25

0

0
0.25

f6(xc,xe) [−1; 3]2 [0; 10]2
1

1

any

any
1

4.2 Simple engineering problem

The optimal design of a vibration absorber for a structure with an uncertain forcing
frequency is a classical benchmark in mechanics, initially proposed in [36]. It can
be formalized as a minimax optimization problem, for which various algorithms,
ranging from analytical optimization to evolutionary strategies, have already been
employed [37,38]. The results found in these papers are very similar, which makes
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Table 2: Empirical mean ± standard deviation of MSE(x̂c) based on 50 runs for
MiMaReK 1 and MiMaReK 2 and comparison with other methods (Section 4.1)

MiMaReK 1 MiMaReK 2 [11] (105 ev.) [12] (105 ev.) [35] (110 ev.)

f1
0

±0
3.05 · 10−7

±5.43 · 10−7

1.90 · 10−9

±8.04 · 10−9

2.08 · 10−15

±5.71 · 10−13

4.05 · 10−9

±1.38 · 10−8

f2
3.12 · 10−3

±7.13 · 10−3

3.9 · 10−3

±7.2 · 10−3

1.50 · 10−3

±8.90 · 10−3

1.09 · 10−4

±7.20 · 10−4

5.53 · 10−13

±1.04 · 10−12

f3
1.48 · 10−3

±7.30 · 10−3

1.52 · 10−7

±7.65 · 10−7

3.30 · 10−3

±1.14 · 10−2

5.79 · 10−6

±4.98 · 10−5

1.75 · 10−3

±7.34 · 10−3

f4
2.30 · 10−2

±2.79 · 10−2

5.58 · 10−5

±2.73 · 10−4

4.31 · 10−2

±8.34 · 10−2

2.19 · 10−2

±3.79 · 10−2

8.14 · 10−3

±1.97 · 10−3

f5
1.23 · 10−4

±7.58 · 10−4

1.34 · 10−5

±2.80 · 10−5

4.93 · 10−2

±5.90 · 10−2

8.2 · 10−11

±3.60 · 10−4

6.80 · 10−10

±3.50 · 10−10

f6
1.43 · 10−3

±3.88 · 10−3

1.78 · 10−4

±6.59 · 10−4

1.75 · 10−2

±2.25 · 10−2

3.4 · 10−3

±8.32 · 10−2

4.21 · 10−3

±5.50 · 10−3

Table 3: Empirical mean ± standard deviation of number of evaluations by Mi-
MaReK 1 and MiMaReK 2 based on 50 runs (Section 4.1)

Test function f1 f2 f3 f4 f5 f6

MiMaReK 1 52± 1 270± 68 281± 72 279± 89 94± 4 223± 89

MiMaReK 2 33± 0 150± 40 224± 32 225± 38 55± 1 143± 83

it possible to use them as reference solutions to assess the behavior of MiMaReK
on such problems.

The system is described in Figure 2. A primary structure with mass m1 is
subjected to a sinusoidal force of amplitude X0 and unknown frequency ω. The
amplitude of the resulting harmonic motion of m1 is denoted by X1. A smaller
structure with mass m2 is used to compensate for the oscillations generated by this
disturbance through a viscous damping action. The design problem is to determine
the characteristics of this damper so as to be robust to the worst forcing frequency.

The performance index to be optimized is the normalized maximum displace-
ment of the primary structure, which can be expressed [36,37] as

J =
k1X1

X0
=

1

Z

√(
1− β2

T 2

)2

+ 4

(
ζ2β

T

)2

, (28)

where

Z
2 =

[
β2

T 2

(
β
2 − 1

)
− β

2 (1 + µ)− 4
ζ1ζ2β

2

T
+ 1

]2

+ 4

[
ζ1β

3

T 2
+

ζ2β
3 (1 + µ)− ζ2β

T
− ζ1β

]2
.

(29)
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Fig. 2: Vibration absorber

These definitions involve the reduced variables

ωi =

√
ki

mi

, ζi =
bi

2
√
kimi

, β =
ω

ω1
, T =

ω2

ω1
, µ =

m2

m1
. (30)

The parameters of the main system are fixed to µ = 0.1, ζ1 = 0.1 and ω1 = 100.
The decision variables to be determined are ζ2 and T , while the optimization
should be robust to the effect of the environmental variable β. The design problem
can thus be written as the search for

{
ζ2

∗
, T

∗
, β

∗
}
= argmin

ζ2,T
max
β

J. (31)

Following [36–38], it is assumed that ζ2 ∈ [0, 1], T ∈ [0, 2] and β ∈ [0, 2.5]. In spite
of the analytical character of the performance index, it is treated here as a black
box.

Reference results of the literature are in Table 4. The result given by [38],
which was obtained with a refined sampling grid, will be used as the reference for
analyzing the results provided by the two versions of MiMaReK. The tuning pa-
rameters of MiMaReK 1 and Mimarek 2 were set to εR = 10−4, εcEI = εeEI = 10−6,
nc
EI = 40, ne

EI = 20. For comparison, a similar design problem has been addressed
in [39] using ant-colony optimization, and required more than 104 evaluations,
which will be impractical if the design cost function were evaluated via costly sim-
ulations. The results averaged on 50 runs (MSE and standard deviation for x∗

c , x
∗
e ,

optimum value Jminimax and number of evaluations) obtained with MiMaReK 1
and MiMaReK 2 are given in Table 5. They are very close to the reference, although
the number of evaluations of the cost function was much smaller. At least six it-
erations of the global relaxation loop were required to reach the solution, which
suggests that the strategy from reference [35], which uses a fixed number of 110
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evaluations, would be inappropriate. MiMaReK 2 required less evaluations than
MiMaReK 1 to achieve a similar performance level, which confirms the interest of
this new strategy for minimax optimization of black-box functions.

Table 4: Reference minimax results obtained for damper design (Section 4.2)

ζ∗2 T ∗ β∗ Jminimax

Randall [36] 0.204 0.861 1.038 2.6271

Pennestri [37] 0.202 0.861 1.04 2.6272

Brown/Singh [38] 0.1986 0.8619 1.043 2.6227

Table 5: Empirical mean ± standard deviation of MSE(x∗
c), MSE(x∗

e),
MSE(Jminimax) with respect to reference solution [38], and number of evaluations
for MiMaReK 1 and MiMaReK 2 based on 50 runs (Section 4.2)

MSE (x∗
c) MSE (x∗

e) MSE (Jminimax) Nb. evaluations

MiMaReK 1
1.14 · 10−4

±1.13 · 10−4

7.76 · 10−5

±8.53 · 10−5

4.57 · 10−4

±2.92 · 10−4
1452± 566

MiMaReK 2
2.92 · 10−4

±2.37 · 10−4

1.75 · 10−4

±1.73 · 10−4

2.4 · 10−3

±3 · 10−3
883± 326

5 Conclusions and perspectives

Continuous minimax optimization problems for functions evaluated via costly nu-
merical simulations is a difficult problem on which most existing algorithms are not
applicable, either because they require a closed-form expression for the function or
because too many evaluations are necessary. The MiMaReK algorithm presented
in [10] is able to handle such problems under a restricted simulation budget by
combining two relaxations tools: an iterative relaxation procedure first described
in [15] and EGO, a global optimization procedure based on Kriging and Expected
Improvement [16].

Following this framework, a new strategy based on a the evaluation of Ex-
pected Improvement in a minimax context has been proposed for further reducing
the number of evaluations of the performance index for black-box minimax opti-
mization. The performance of the methods have been evaluated on a collection of
analytical test functions for comparison with other approaches and on a classical
benchmark in mechanics. In all cases, the new algorithm significantly reduced the
number of required evaluations of the performance function.

Further improvement in the reduction of the number of evaluations might be
achieved by sampling strategies in the joint control and environmental space. If
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interesting results have been obtained with probabilistic uncertainty [40,41], this
is still an open topic for minimax optimization.

Constrained minimax optimization with MiMaReK remains to be investigated,
in particular when the constraints are costly to evaluate and involve coupling be-
tween the design and environmental variables. Higher-dimensional engineering de-
sign problems will also be investigated in the near future. Since the new algorithm
builds a single Kriging predictor on all the data collected throughout the minimax
optimization procedure, the fitting of this model might become cumbersome when
the dimension of the problem and the number of evaluations grow. In this regard,
the use of sparse representations [42] may be quite beneficial.

Acknowledgments

The authors thank the reviewers for their comments and suggestions, which led to
major improvements of the original submission.

References

1. D. Bertsimas, D. B. Brown, and C. Caramanis. Theory and applications of robust opti-
mization. SIAM Review, 53:464–501, 2011.

2. A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton University
Press, Princeton, NJ, 2009.

3. C. Zang, M. I. Friswell, and J. E. Mottershead. A review of robust optimal design and its
application in dynamics. Computers & structures, 83(4):315–326, 2005.

4. H. G. Beyer and B. Sendhoff. Robust optimization – a comprehensive survey. Computer

Methods in Applied Mechanics and Engineering, 196(33-34):3190–3218, 2007.
5. X. Du and W. Chen. Towards a better understanding of modeling feasibility robustness

in engineering design. Journal of Mechanical Design, 122:385–394, 2000.
6. R. Jin, X. Du, and W. Chen. The use of metamodeling techniques for optimization under

uncertainty. Structural and Multidisciplinary Optimization, 25:99–116, 2003.
7. J. Janusevskis and R. Le Riche. Simultaneous Kriging-based estimation and optimization

of mean response. Journal of Global Optimization, 55(2):313–336, 2013.
8. B. J. Williams, T. J. Santner, and W. I. Notz. Sequential design of computer experiments

to minimize integrated response functions. Statistica Sinica, 10(4):1133–1152, 2000.
9. B. Rustem and M. Howe. Algorithms for Worst-Case Design and Applications to Risk

Management. Princeton University Press, 2002.
10. J. Marzat, E. Walter, and H. Piet-Lahanier. Worst-case global optimization of black-box

functions through Kriging and relaxation. Journal of Global Optimization, 55(4):707–727,
2013.

11. A. M. Cramer, S. D. Sudhoff, and E. L. Zivi. Evolutionary algorithms for minimax prob-
lems in robust design. IEEE Transactions on Evolutionary Computation, 13(2):444–453,
2009.

12. R. I. Lung and D. Dumitrescu. A new evolutionary approach to minimax problems. In
Proceedings of the 2011 IEEE Congress on Evolutionary Computation, New Orleans,

USA, pages 1902–1905, 2011.
13. D. Du and P. M. Pardalos. Minimax and Applications. Kluwer Academic Publishers,

Norwell, 1995.
14. P. Parpas and B. Rustem. An algorithm for the global optimization of a class of continuous

minimax problems. Journal of Optimization Theory and Applications, 141(2):461–473,
2009.

15. K. Shimizu and E. Aiyoshi. Necessary conditions for min-max problems and algorithms
by a relaxation procedure. IEEE Transactions on Automatic Control, 25(1):62–66, 1980.

16. D. R. Jones, M. J. Schonlau, and W. J. Welch. Efficient global optimization of expensive
black-box functions. Journal of Global Optimization, 13(4):455–492, 1998.



A new expected-improvement algorithm for continuous minimax optimization 19

17. J. Mockus. Bayesian Approach to Global Optimization: Theory and Applications. Kluwer
Academic Publishers, Dordrecht, 1989.

18. H. J. Kushner. A versatile stochastic model of a function of unknown and time varying
form. Journal of Mathematical Analysis and Applications, 5(1):150–167, 1962.

19. D.R. Jones. A taxonomy of global optimization methods based on response surfaces.
Journal of Global Optimization, 21(4):345–383, 2001.

20. G. Matheron. Principles of geostatistics. Economic Geology, 58(8):1246–1266, 1963.
21. T. J. Santner, B. J. Williams, and W. Notz. The Design and Analysis of Computer

Experiments. Springer-Verlag, Berlin-Heidelberg, 2003.
22. M. Schonlau. Computer Experiments and Global Optimization. PhD thesis, University of

Waterloo, Canada, 1997.
23. D. C. Montgomery. Design and Analysis of Experiments, 7th Edition. Wiley, Hoboken,

2008.
24. D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization without

the Lipschitz constant. Journal of Optimization Theory and Applications, 79(1):157–181,
1993.

25. M. J. Sasena. Flexibility and Efficiency Enhancements for Constrained Global Design

Optimization with Kriging Approximations. PhD thesis, University of Michigan, USA,
2002.

26. Y. D. Sergeyev and D. E. Kvasov. Global search based on efficient diagonal partitions and
a set of lipschitz constants. SIAM Journal on Optimization, 16(3):910–937, 2006.

27. E. Vazquez and J. Bect. Convergence properties of the expected improvement algorithm
with fixed mean and covariance functions. Journal of Statistical Planning and Inference,
140(11):3088–3095, 2010.

28. A. D. Bull. Convergence rates of efficient global optimization algorithms. Journal of

Machine Learning Research, 12:2879–2904, 2011.
29. D. Huang, T. T. Allen, W. I. Notz, and N. Zeng. Global optimization of stochastic

black-box systems via sequential kriging meta-models. Journal of Global Optimization,
34(3):441–466, 2006.

30. J. Villemonteix, E. Vazquez, and E. Walter. An informational approach to the global op-
timization of expensive-to-evaluate functions. Journal of Global Optimization, 44(4):509–
534, 2009.

31. J. Marzat, E. Walter, F. Damongeot, and H. Piet-Lahanier. Robust automatic tuning of
diagnosis methods via an efficient use of costly simulations. In Proceedings of the 16th

IFAC Symposium on System Identification, Brussels, Belgium, pages 398–403, 2012.
32. J. Marzat, E. Walter, and H. Piet-Lahanier. A new strategy for worst-case design from

costly numerical simulations. In Proceedings of the American Control Conference, Wash-

ington DC, USA, pages 3991–3996, 2013.
33. J. Bect, D. Ginsbourger, L. Li, V. Picheny, and E. Vazquez. Sequential design of computer

experiments for the estimation of a probability of failure. Statistics and Computing,
22(3):773–793, 2012.

34. C. Chevalier and D. Ginsbourger. Fast computation of the multi-points expected improve-
ment with applications in batch selection. In G. Nicosia and P. Pardalos, editors, Learning
and Intelligent Optimization, volume 7997 of Lecture Notes in Computer Science, pages
59–69. Springer Berlin Heidelberg, 2013.

35. A. Zhou and Q. Zhang. A surrogate-assisted evolutionary algorithm for minimax op-
timization. In Proceedings of the 2010 IEEE Congress on Evolutionary Computation,

Barcelona, Spain, pages 1–7, 2010.
36. S. E. Randall. Optimum vibration absorbers for linear damped systems. ASME Journal

of Mechanical Design, 103:908–913, 1978.
37. E. Pennestri. An application of Chebyshev’s min-max criterion to the optimal design of

a damped dynamic vibration absorber. Journal of Sound and Vibration, 217(4):757–765,
1998.

38. B. Brown and T. Singh. Minimax design of vibration absorbers for linear damped systems.
Journal of Sound and Vibration, 330(11):2437–2448, 2011.

39. F. A. C. Viana, G. I. Kotinda, D. A. Rade, and V. Steffen Jr. Tuning dynamic vibration
absorbers by using ant colony optimization. Computers & Structures, 86(13-14):1539–
1549, 2008.

40. V. Dubourg, B. Sudret, and J.-M. Bourinet. Reliability-based design optimization using
Kriging surrogates and subset simulation. Structural and Multidisciplinary Optimization,
44(5):673–690, 2011.



20 Julien Marzat et al.

41. C. Chevalier. Fast uncertainty reduction strategies relying on Gaussian process models.
PhD thesis, University of Bern, 2013.
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